Order Now  +1 678 648 4277 

Data Analysis Using R Homework Solution

The following solution for data analysis using r shows how r is used to find the t-test and other parameters based on two different types of data. It also involves testing hypotheses, making decisions, and explaining the reason behind every decision.

Finding the t-test and deciding on the hypotheses

Here, the means, standard deviations, and t-tests for the two different sets of data are calculated. Conclusions on hypotheses on each are given, and the results are all explained. The pooled variance is also calculated.

Finding the mean and standard deviation for the first set of participants

1a) what is the Mean for the Before Therapy group?

Answer: 10.875

1b)what is the Standard Deviation for the Before Therapy group?

Answer: 2.390955

1c) what is the Mean for the After Therapy group?

Answer: 10.5625

1d) what is the Standard Deviation for the After Therapy group?

Answer: 2.393568

Deciding on the appropriate test

1e) what type of t-test is required here?

Answer: paired sample t-test

Deciding on the hypothesis

1f) based on your findings; can we reject the null hypothesis? Report your findings using the format below, as demonstrated in the lab. Be sure to clearly state the variables. If there is a significant difference, clarify which direction it is going.

Answer: We cannot reject the null hypothesis. There is not a significant difference in mean between before therapy and after therapy.

t(15)= 0.628 , p= 0.540

Finding the T-Test

1g) Calculate this same t-test by hand. Round to two decimals. You do not have to show your calculations. Just state what you calculated the Standard Error (s_D┴¯ ) to be. (Remember, the Standard Error is the denominator of the t-ratio)

Standard Error (s_D┴¯ ) =1.99

Problem 2

Researchers were interested in which of two methods were best for retention. They had all subjects read a chapter in a textbook. Then, one group of subjects ('Study') was encouraged to study the material for 60 minutes. The other group of subjects (‘Quiz’) was not allowed to study but was actually given a 60-minute quiz on the material. Then, all subjects were required to complete a final test on the material. Perform an appropriate t-test on the final test scores with R to see if there is a difference in performance between the Study and Quiz groups

Finding the mean and standard deviation for the second set of participants

2a) what is the Mean for the Study group?

Answer: 18.7857

2b) What is the Standard Deviation for the Study group?

Answer: 5.950806

2c) What is the Mean for the Quiz group?

Answer: 26.5

2d) what is the Standard Deviation for the Quiz group?

Answer: 6.449806

Deciding on the appropriate test

2e) what type of t-test is required here?

Answer: Independent two-sample t-test

Deciding on the hypothesis

2f) based on your findings; can we reject the null hypothesis? Report your findings using the format below. Be sure to clearly state the variables. If there is a significant difference, clarify which direction it is going.

Answer:

We can reject the null hypothesis. There is a significant difference in the mean between before and after.

T ( 28) = -3.3873, p= 0.002

Finding the Pooled Variance

2g) Calculate the Pooled Variance (s_p^2) for this same t-test by hand. Hint: To save much time, use the Standard Deviations from the R output. Round to two decimals places. You do not have to show your calculations.

Pooled Variance (s_p^2) =6.22

Q3

> #Q1

> Assign3 <- read.delim("C:/Users/CSSC/Downloads/Assign3.txt")

> ETURN<-data.frame(Assign3)

>mean(ETURN$BeforeTherapy,na.rm=TRUE )

[1] 10.875

>sd(ETURN$BeforeTherapy, na.rm = TRUE)

[1] 2.390955

>mean(ETURN$AfterTherapy, na.rm= TRUE)

[1] 10.5625

>sd(ETURN$AfterTherapy)

[1] 2.393568

>t.test(ETURN$BeforeTherapy,ETURN$AfterTherapy,paired = TRUE, na.rm= TRUE)

 Paired t-test

data: ETURN$BeforeTherapy and ETURN$AfterTherapy

t = 0.62795, df = 15, p-value = 0.5395

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 -0.7482174 1.3732174

sample estimates:

mean of the differences

                 0.3125

> #Q2

>mean(ETURN$Study,na.rm= TRUE)

[1] 18.78571

>sd(ETURN$Study, na.rm=TRUE)

[1] 5.950806

>mean(ETURN$Quiz, na.rm=TRUE)

[1] 26.5

>sd(ETURN$Quiz, na.rm=TRUE)

[1] 6.449806

>t.test(ETURN$Study,ETURN$Quiz, na.rm=TRUE)

 Welch Two Sample t-test

data: ETURN$Study and ETURN$Quiz

t = -3.4061, df = 27.907, p-value =

0.002016

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 -12.354269 -3.074302

sample estimates:

mean of x mean of y

18.78571 26.50000